Metamath Proof Explorer


Theorem mbfneg

Description: The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014)

Ref Expression
Hypotheses mbfneg.1 φ x A B V
mbfneg.2 φ x A B MblFn
Assertion mbfneg φ x A B MblFn

Proof

Step Hyp Ref Expression
1 mbfneg.1 φ x A B V
2 mbfneg.2 φ x A B MblFn
3 eqid x A B = x A B
4 3 1 dmmptd φ dom x A B = A
5 2 dmexd φ dom x A B V
6 4 5 eqeltrrd φ A V
7 neg1rr 1
8 7 a1i φ x A 1
9 fconstmpt A × 1 = x A 1
10 9 a1i φ A × 1 = x A 1
11 eqidd φ x A B = x A B
12 6 8 1 10 11 offval2 φ A × 1 × f x A B = x A -1 B
13 2 1 mbfmptcl φ x A B
14 13 mulm1d φ x A -1 B = B
15 14 mpteq2dva φ x A -1 B = x A B
16 12 15 eqtrd φ A × 1 × f x A B = x A B
17 7 a1i φ 1
18 13 fmpttd φ x A B : A
19 2 17 18 mbfmulc2re φ A × 1 × f x A B MblFn
20 16 19 eqeltrrd φ x A B MblFn