Metamath Proof Explorer


Theorem mbfpos

Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014)

Ref Expression
Hypotheses mbfpos.1 φ x A B
mbfpos.2 φ x A B MblFn
Assertion mbfpos φ x A if 0 B B 0 MblFn

Proof

Step Hyp Ref Expression
1 mbfpos.1 φ x A B
2 mbfpos.2 φ x A B MblFn
3 c0ex 0 V
4 3 fvconst2 x A A × 0 x = 0
5 4 adantl φ x A A × 0 x = 0
6 simpr φ x A x A
7 eqid x A B = x A B
8 7 fvmpt2 x A B x A B x = B
9 6 1 8 syl2anc φ x A x A B x = B
10 5 9 breq12d φ x A A × 0 x x A B x 0 B
11 10 9 5 ifbieq12d φ x A if A × 0 x x A B x x A B x A × 0 x = if 0 B B 0
12 11 mpteq2dva φ x A if A × 0 x x A B x x A B x A × 0 x = x A if 0 B B 0
13 0re 0
14 13 fconst6 A × 0 : A
15 14 a1i φ A × 0 : A
16 2 1 mbfdm2 φ A dom vol
17 0cnd φ 0
18 mbfconst A dom vol 0 A × 0 MblFn
19 16 17 18 syl2anc φ A × 0 MblFn
20 1 fmpttd φ x A B : A
21 nfcv _ y if A × 0 x x A B x x A B x A × 0 x
22 nfcv _ x A × 0 y
23 nfcv _ x
24 nffvmpt1 _ x x A B y
25 22 23 24 nfbr x A × 0 y x A B y
26 25 24 22 nfif _ x if A × 0 y x A B y x A B y A × 0 y
27 fveq2 x = y A × 0 x = A × 0 y
28 fveq2 x = y x A B x = x A B y
29 27 28 breq12d x = y A × 0 x x A B x A × 0 y x A B y
30 29 28 27 ifbieq12d x = y if A × 0 x x A B x x A B x A × 0 x = if A × 0 y x A B y x A B y A × 0 y
31 21 26 30 cbvmpt x A if A × 0 x x A B x x A B x A × 0 x = y A if A × 0 y x A B y x A B y A × 0 y
32 15 19 20 2 31 mbfmax φ x A if A × 0 x x A B x x A B x A × 0 x MblFn
33 12 32 eqeltrrd φ x A if 0 B B 0 MblFn