| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfpos.1 |  | 
						
							| 2 |  | nfcv |  | 
						
							| 3 |  | nfcv |  | 
						
							| 4 |  | nffvmpt1 |  | 
						
							| 5 | 2 3 4 | nfbr |  | 
						
							| 6 | 5 4 2 | nfif |  | 
						
							| 7 |  | nfcv |  | 
						
							| 8 |  | fveq2 |  | 
						
							| 9 | 8 | breq2d |  | 
						
							| 10 | 9 8 | ifbieq1d |  | 
						
							| 11 | 6 7 10 | cbvmpt |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 13 | fvmpt2 |  | 
						
							| 15 | 12 1 14 | syl2anc |  | 
						
							| 16 | 15 | breq2d |  | 
						
							| 17 | 16 15 | ifbieq1d |  | 
						
							| 18 | 17 | mpteq2dva |  | 
						
							| 19 | 11 18 | eqtrid |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 1 | fmpttd |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 | 22 | ffvelcdmda |  | 
						
							| 24 |  | nfcv |  | 
						
							| 25 | 4 24 8 | cbvmpt |  | 
						
							| 26 | 15 | mpteq2dva |  | 
						
							| 27 | 25 26 | eqtrid |  | 
						
							| 28 | 27 | eleq1d |  | 
						
							| 29 | 28 | biimpar |  | 
						
							| 30 | 23 29 | mbfpos |  | 
						
							| 31 | 20 30 | eqeltrrd |  | 
						
							| 32 | 4 | nfneg |  | 
						
							| 33 | 2 3 32 | nfbr |  | 
						
							| 34 | 33 32 2 | nfif |  | 
						
							| 35 |  | nfcv |  | 
						
							| 36 | 8 | negeqd |  | 
						
							| 37 | 36 | breq2d |  | 
						
							| 38 | 37 36 | ifbieq1d |  | 
						
							| 39 | 34 35 38 | cbvmpt |  | 
						
							| 40 | 15 | negeqd |  | 
						
							| 41 | 40 | breq2d |  | 
						
							| 42 | 41 40 | ifbieq1d |  | 
						
							| 43 | 42 | mpteq2dva |  | 
						
							| 44 | 39 43 | eqtrid |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 23 | renegcld |  | 
						
							| 47 | 23 29 | mbfneg |  | 
						
							| 48 | 46 47 | mbfpos |  | 
						
							| 49 | 45 48 | eqeltrrd |  | 
						
							| 50 | 31 49 | jca |  | 
						
							| 51 | 27 | adantr |  | 
						
							| 52 | 21 | ffvelcdmda |  | 
						
							| 53 | 52 | adantlr |  | 
						
							| 54 | 19 | adantr |  | 
						
							| 55 |  | simprl |  | 
						
							| 56 | 54 55 | eqeltrd |  | 
						
							| 57 | 44 | adantr |  | 
						
							| 58 |  | simprr |  | 
						
							| 59 | 57 58 | eqeltrd |  | 
						
							| 60 | 53 56 59 | mbfposr |  | 
						
							| 61 | 51 60 | eqeltrrd |  | 
						
							| 62 | 50 61 | impbida |  |