Metamath Proof Explorer


Theorem mbfres

Description: The restriction of a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion mbfres F MblFn A dom vol F A MblFn

Proof

Step Hyp Ref Expression
1 ref :
2 simpr F MblFn A dom vol A dom vol
3 ismbf1 F MblFn F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol
4 3 simplbi F MblFn F 𝑝𝑚
5 4 adantr F MblFn A dom vol F 𝑝𝑚
6 pmresg A dom vol F 𝑝𝑚 F A 𝑝𝑚 A
7 2 5 6 syl2anc F MblFn A dom vol F A 𝑝𝑚 A
8 cnex V
9 elpm2g V A dom vol F A 𝑝𝑚 A F A : dom F A dom F A A
10 8 2 9 sylancr F MblFn A dom vol F A 𝑝𝑚 A F A : dom F A dom F A A
11 7 10 mpbid F MblFn A dom vol F A : dom F A dom F A A
12 11 simpld F MblFn A dom vol F A : dom F A
13 fco : F A : dom F A F A : dom F A
14 1 12 13 sylancr F MblFn A dom vol F A : dom F A
15 dmres dom F A = A dom F
16 id A dom vol A dom vol
17 mbfdm F MblFn dom F dom vol
18 inmbl A dom vol dom F dom vol A dom F dom vol
19 16 17 18 syl2anr F MblFn A dom vol A dom F dom vol
20 15 19 eqeltrid F MblFn A dom vol dom F A dom vol
21 resco F A = F A
22 21 cnveqi F A -1 = F A -1
23 22 imaeq1i F A -1 x +∞ = F A -1 x +∞
24 cnvresima F A -1 x +∞ = F -1 x +∞ A
25 23 24 eqtr3i F A -1 x +∞ = F -1 x +∞ A
26 mbff F MblFn F : dom F
27 ismbfcn F : dom F F MblFn F MblFn F MblFn
28 26 27 syl F MblFn F MblFn F MblFn F MblFn
29 28 ibi F MblFn F MblFn F MblFn
30 29 simpld F MblFn F MblFn
31 fco : F : dom F F : dom F
32 1 26 31 sylancr F MblFn F : dom F
33 mbfima F MblFn F : dom F F -1 x +∞ dom vol
34 30 32 33 syl2anc F MblFn F -1 x +∞ dom vol
35 inmbl F -1 x +∞ dom vol A dom vol F -1 x +∞ A dom vol
36 34 35 sylan F MblFn A dom vol F -1 x +∞ A dom vol
37 25 36 eqeltrid F MblFn A dom vol F A -1 x +∞ dom vol
38 37 adantr F MblFn A dom vol x F A -1 x +∞ dom vol
39 22 imaeq1i F A -1 −∞ x = F A -1 −∞ x
40 cnvresima F A -1 −∞ x = F -1 −∞ x A
41 39 40 eqtr3i F A -1 −∞ x = F -1 −∞ x A
42 mbfima F MblFn F : dom F F -1 −∞ x dom vol
43 30 32 42 syl2anc F MblFn F -1 −∞ x dom vol
44 inmbl F -1 −∞ x dom vol A dom vol F -1 −∞ x A dom vol
45 43 44 sylan F MblFn A dom vol F -1 −∞ x A dom vol
46 41 45 eqeltrid F MblFn A dom vol F A -1 −∞ x dom vol
47 46 adantr F MblFn A dom vol x F A -1 −∞ x dom vol
48 14 20 38 47 ismbf2d F MblFn A dom vol F A MblFn
49 imf :
50 fco : F A : dom F A F A : dom F A
51 49 12 50 sylancr F MblFn A dom vol F A : dom F A
52 resco F A = F A
53 52 cnveqi F A -1 = F A -1
54 53 imaeq1i F A -1 x +∞ = F A -1 x +∞
55 cnvresima F A -1 x +∞ = F -1 x +∞ A
56 54 55 eqtr3i F A -1 x +∞ = F -1 x +∞ A
57 29 simprd F MblFn F MblFn
58 fco : F : dom F F : dom F
59 49 26 58 sylancr F MblFn F : dom F
60 mbfima F MblFn F : dom F F -1 x +∞ dom vol
61 57 59 60 syl2anc F MblFn F -1 x +∞ dom vol
62 inmbl F -1 x +∞ dom vol A dom vol F -1 x +∞ A dom vol
63 61 62 sylan F MblFn A dom vol F -1 x +∞ A dom vol
64 56 63 eqeltrid F MblFn A dom vol F A -1 x +∞ dom vol
65 64 adantr F MblFn A dom vol x F A -1 x +∞ dom vol
66 53 imaeq1i F A -1 −∞ x = F A -1 −∞ x
67 cnvresima F A -1 −∞ x = F -1 −∞ x A
68 66 67 eqtr3i F A -1 −∞ x = F -1 −∞ x A
69 mbfima F MblFn F : dom F F -1 −∞ x dom vol
70 57 59 69 syl2anc F MblFn F -1 −∞ x dom vol
71 inmbl F -1 −∞ x dom vol A dom vol F -1 −∞ x A dom vol
72 70 71 sylan F MblFn A dom vol F -1 −∞ x A dom vol
73 68 72 eqeltrid F MblFn A dom vol F A -1 −∞ x dom vol
74 73 adantr F MblFn A dom vol x F A -1 −∞ x dom vol
75 51 20 65 74 ismbf2d F MblFn A dom vol F A MblFn
76 ismbfcn F A : dom F A F A MblFn F A MblFn F A MblFn
77 12 76 syl F MblFn A dom vol F A MblFn F A MblFn F A MblFn
78 48 75 77 mpbir2and F MblFn A dom vol F A MblFn