Metamath Proof Explorer


Theorem mbfres2

Description: Measurability of a piecewise function: if F is measurable on subsets B and C of its domain, and these pieces make up all of A , then F is measurable on the whole domain. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Hypotheses mbfres2.1 φ F : A
mbfres2.2 φ F B MblFn
mbfres2.3 φ F C MblFn
mbfres2.4 φ B C = A
Assertion mbfres2 φ F MblFn

Proof

Step Hyp Ref Expression
1 mbfres2.1 φ F : A
2 mbfres2.2 φ F B MblFn
3 mbfres2.3 φ F C MblFn
4 mbfres2.4 φ B C = A
5 4 reseq2d φ F B C = F A
6 ffn F : A F Fn A
7 fnresdm F Fn A F A = F
8 1 6 7 3syl φ F A = F
9 5 8 eqtr2d φ F = F B C
10 9 adantr φ x ran . F = F B C
11 resundi F B C = F B F C
12 10 11 eqtrdi φ x ran . F = F B F C
13 12 cnveqd φ x ran . F -1 = F B F C -1
14 cnvun F B F C -1 = F B -1 F C -1
15 13 14 eqtrdi φ x ran . F -1 = F B -1 F C -1
16 15 imaeq1d φ x ran . F -1 x = F B -1 F C -1 x
17 imaundir F B -1 F C -1 x = F B -1 x F C -1 x
18 16 17 eqtrdi φ x ran . F -1 x = F B -1 x F C -1 x
19 ssun1 B B C
20 19 4 sseqtrid φ B A
21 1 20 fssresd φ F B : B
22 ismbf F B : B F B MblFn x ran . F B -1 x dom vol
23 21 22 syl φ F B MblFn x ran . F B -1 x dom vol
24 2 23 mpbid φ x ran . F B -1 x dom vol
25 24 r19.21bi φ x ran . F B -1 x dom vol
26 ssun2 C B C
27 26 4 sseqtrid φ C A
28 1 27 fssresd φ F C : C
29 ismbf F C : C F C MblFn x ran . F C -1 x dom vol
30 28 29 syl φ F C MblFn x ran . F C -1 x dom vol
31 3 30 mpbid φ x ran . F C -1 x dom vol
32 31 r19.21bi φ x ran . F C -1 x dom vol
33 unmbl F B -1 x dom vol F C -1 x dom vol F B -1 x F C -1 x dom vol
34 25 32 33 syl2anc φ x ran . F B -1 x F C -1 x dom vol
35 18 34 eqeltrd φ x ran . F -1 x dom vol
36 35 ralrimiva φ x ran . F -1 x dom vol
37 ismbf F : A F MblFn x ran . F -1 x dom vol
38 1 37 syl φ F MblFn x ran . F -1 x dom vol
39 36 38 mpbird φ F MblFn