| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfss.1 |
|
| 2 |
|
mbfss.2 |
|
| 3 |
|
mbfss.3 |
|
| 4 |
|
mbfss.4 |
|
| 5 |
|
mbfss.5 |
|
| 6 |
|
elun |
|
| 7 |
|
undif2 |
|
| 8 |
|
ssequn1 |
|
| 9 |
1 8
|
sylib |
|
| 10 |
7 9
|
eqtrid |
|
| 11 |
10
|
eleq2d |
|
| 12 |
6 11
|
bitr3id |
|
| 13 |
12
|
biimpar |
|
| 14 |
5 3
|
mbfmptcl |
|
| 15 |
|
0cn |
|
| 16 |
4 15
|
eqeltrdi |
|
| 17 |
14 16
|
jaodan |
|
| 18 |
13 17
|
syldan |
|
| 19 |
18
|
recld |
|
| 20 |
19
|
fmpttd |
|
| 21 |
1
|
resmptd |
|
| 22 |
14
|
ismbfcn2 |
|
| 23 |
5 22
|
mpbid |
|
| 24 |
23
|
simpld |
|
| 25 |
21 24
|
eqeltrd |
|
| 26 |
|
difss |
|
| 27 |
|
resmpt |
|
| 28 |
26 27
|
ax-mp |
|
| 29 |
4
|
fveq2d |
|
| 30 |
|
re0 |
|
| 31 |
29 30
|
eqtrdi |
|
| 32 |
31
|
mpteq2dva |
|
| 33 |
28 32
|
eqtrid |
|
| 34 |
|
fconstmpt |
|
| 35 |
5 3
|
mbfdm2 |
|
| 36 |
|
difmbl |
|
| 37 |
2 35 36
|
syl2anc |
|
| 38 |
|
mbfconst |
|
| 39 |
37 15 38
|
sylancl |
|
| 40 |
34 39
|
eqeltrrid |
|
| 41 |
33 40
|
eqeltrd |
|
| 42 |
20 25 41 10
|
mbfres2 |
|
| 43 |
18
|
imcld |
|
| 44 |
43
|
fmpttd |
|
| 45 |
1
|
resmptd |
|
| 46 |
23
|
simprd |
|
| 47 |
45 46
|
eqeltrd |
|
| 48 |
|
resmpt |
|
| 49 |
26 48
|
ax-mp |
|
| 50 |
4
|
fveq2d |
|
| 51 |
|
im0 |
|
| 52 |
50 51
|
eqtrdi |
|
| 53 |
52
|
mpteq2dva |
|
| 54 |
49 53
|
eqtrid |
|
| 55 |
54 40
|
eqeltrd |
|
| 56 |
44 47 55 10
|
mbfres2 |
|
| 57 |
18
|
ismbfcn2 |
|
| 58 |
42 56 57
|
mpbir2and |
|