Metamath Proof Explorer


Theorem mbfsub

Description: The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014)

Ref Expression
Hypotheses mbfadd.1 φ F MblFn
mbfadd.2 φ G MblFn
Assertion mbfsub φ F f G MblFn

Proof

Step Hyp Ref Expression
1 mbfadd.1 φ F MblFn
2 mbfadd.2 φ G MblFn
3 mbff F MblFn F : dom F
4 1 3 syl φ F : dom F
5 elinel1 x dom F dom G x dom F
6 ffvelrn F : dom F x dom F F x
7 4 5 6 syl2an φ x dom F dom G F x
8 mbff G MblFn G : dom G
9 2 8 syl φ G : dom G
10 elinel2 x dom F dom G x dom G
11 ffvelrn G : dom G x dom G G x
12 9 10 11 syl2an φ x dom F dom G G x
13 7 12 negsubd φ x dom F dom G F x + G x = F x G x
14 13 eqcomd φ x dom F dom G F x G x = F x + G x
15 14 mpteq2dva φ x dom F dom G F x G x = x dom F dom G F x + G x
16 4 ffnd φ F Fn dom F
17 9 ffnd φ G Fn dom G
18 mbfdm F MblFn dom F dom vol
19 1 18 syl φ dom F dom vol
20 mbfdm G MblFn dom G dom vol
21 2 20 syl φ dom G dom vol
22 eqid dom F dom G = dom F dom G
23 eqidd φ x dom F F x = F x
24 eqidd φ x dom G G x = G x
25 16 17 19 21 22 23 24 offval φ F f G = x dom F dom G F x G x
26 inmbl dom F dom vol dom G dom vol dom F dom G dom vol
27 19 21 26 syl2anc φ dom F dom G dom vol
28 12 negcld φ x dom F dom G G x
29 eqidd φ x dom F dom G F x = x dom F dom G F x
30 eqidd φ x dom F dom G G x = x dom F dom G G x
31 27 7 28 29 30 offval2 φ x dom F dom G F x + f x dom F dom G G x = x dom F dom G F x + G x
32 15 25 31 3eqtr4d φ F f G = x dom F dom G F x + f x dom F dom G G x
33 inss1 dom F dom G dom F
34 resmpt dom F dom G dom F x dom F F x dom F dom G = x dom F dom G F x
35 33 34 mp1i φ x dom F F x dom F dom G = x dom F dom G F x
36 4 feqmptd φ F = x dom F F x
37 36 1 eqeltrrd φ x dom F F x MblFn
38 mbfres x dom F F x MblFn dom F dom G dom vol x dom F F x dom F dom G MblFn
39 37 27 38 syl2anc φ x dom F F x dom F dom G MblFn
40 35 39 eqeltrrd φ x dom F dom G F x MblFn
41 inss2 dom F dom G dom G
42 resmpt dom F dom G dom G x dom G G x dom F dom G = x dom F dom G G x
43 41 42 mp1i φ x dom G G x dom F dom G = x dom F dom G G x
44 9 feqmptd φ G = x dom G G x
45 44 2 eqeltrrd φ x dom G G x MblFn
46 mbfres x dom G G x MblFn dom F dom G dom vol x dom G G x dom F dom G MblFn
47 45 27 46 syl2anc φ x dom G G x dom F dom G MblFn
48 43 47 eqeltrrd φ x dom F dom G G x MblFn
49 12 48 mbfneg φ x dom F dom G G x MblFn
50 40 49 mbfadd φ x dom F dom G F x + f x dom F dom G G x MblFn
51 32 50 eqeltrd φ F f G MblFn