Metamath Proof Explorer


Theorem mbfulm

Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim .) (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Hypotheses mbfulm.z Z = M
mbfulm.m φ M
mbfulm.f φ F : Z MblFn
mbfulm.u φ F u S G
Assertion mbfulm φ G MblFn

Proof

Step Hyp Ref Expression
1 mbfulm.z Z = M
2 mbfulm.m φ M
3 mbfulm.f φ F : Z MblFn
4 mbfulm.u φ F u S G
5 ulmcl F u S G G : S
6 4 5 syl φ G : S
7 6 feqmptd φ G = z S G z
8 2 adantr φ z S M
9 3 ffnd φ F Fn Z
10 ulmf2 F Fn Z F u S G F : Z S
11 9 4 10 syl2anc φ F : Z S
12 11 adantr φ z S F : Z S
13 simpr φ z S z S
14 1 fvexi Z V
15 14 mptex k Z F k z V
16 15 a1i φ z S k Z F k z V
17 fveq2 k = n F k = F n
18 17 fveq1d k = n F k z = F n z
19 eqid k Z F k z = k Z F k z
20 fvex F n z V
21 18 19 20 fvmpt n Z k Z F k z n = F n z
22 21 eqcomd n Z F n z = k Z F k z n
23 22 adantl φ z S n Z F n z = k Z F k z n
24 4 adantr φ z S F u S G
25 1 8 12 13 16 23 24 ulmclm φ z S k Z F k z G z
26 11 ffvelrnda φ k Z F k S
27 elmapi F k S F k : S
28 26 27 syl φ k Z F k : S
29 28 feqmptd φ k Z F k = z S F k z
30 3 ffvelrnda φ k Z F k MblFn
31 29 30 eqeltrrd φ k Z z S F k z MblFn
32 28 ffvelrnda φ k Z z S F k z
33 32 anasss φ k Z z S F k z
34 1 2 25 31 33 mbflim φ z S G z MblFn
35 7 34 eqeltrd φ G MblFn