Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
mblsplit
Next ⟩
volss
Metamath Proof Explorer
Ascii
Unicode
Theorem
mblsplit
Description:
The defining property of measurability.
(Contributed by
Mario Carneiro
, 17-Mar-2014)
Ref
Expression
Assertion
mblsplit
⊢
A
∈
dom
⁡
vol
∧
B
⊆
ℝ
∧
vol
*
⁡
B
∈
ℝ
→
vol
*
⁡
B
=
vol
*
⁡
B
∩
A
+
vol
*
⁡
B
∖
A
Proof
Step
Hyp
Ref
Expression
1
reex
⊢
ℝ
∈
V
2
1
elpw2
⊢
B
∈
𝒫
ℝ
↔
B
⊆
ℝ
3
ismbl
⊢
A
∈
dom
⁡
vol
↔
A
⊆
ℝ
∧
∀
x
∈
𝒫
ℝ
vol
*
⁡
x
∈
ℝ
→
vol
*
⁡
x
=
vol
*
⁡
x
∩
A
+
vol
*
⁡
x
∖
A
4
fveq2
⊢
x
=
B
→
vol
*
⁡
x
=
vol
*
⁡
B
5
4
eleq1d
⊢
x
=
B
→
vol
*
⁡
x
∈
ℝ
↔
vol
*
⁡
B
∈
ℝ
6
ineq1
⊢
x
=
B
→
x
∩
A
=
B
∩
A
7
6
fveq2d
⊢
x
=
B
→
vol
*
⁡
x
∩
A
=
vol
*
⁡
B
∩
A
8
difeq1
⊢
x
=
B
→
x
∖
A
=
B
∖
A
9
8
fveq2d
⊢
x
=
B
→
vol
*
⁡
x
∖
A
=
vol
*
⁡
B
∖
A
10
7
9
oveq12d
⊢
x
=
B
→
vol
*
⁡
x
∩
A
+
vol
*
⁡
x
∖
A
=
vol
*
⁡
B
∩
A
+
vol
*
⁡
B
∖
A
11
4
10
eqeq12d
⊢
x
=
B
→
vol
*
⁡
x
=
vol
*
⁡
x
∩
A
+
vol
*
⁡
x
∖
A
↔
vol
*
⁡
B
=
vol
*
⁡
B
∩
A
+
vol
*
⁡
B
∖
A
12
5
11
imbi12d
⊢
x
=
B
→
vol
*
⁡
x
∈
ℝ
→
vol
*
⁡
x
=
vol
*
⁡
x
∩
A
+
vol
*
⁡
x
∖
A
↔
vol
*
⁡
B
∈
ℝ
→
vol
*
⁡
B
=
vol
*
⁡
B
∩
A
+
vol
*
⁡
B
∖
A
13
12
rspccv
⊢
∀
x
∈
𝒫
ℝ
vol
*
⁡
x
∈
ℝ
→
vol
*
⁡
x
=
vol
*
⁡
x
∩
A
+
vol
*
⁡
x
∖
A
→
B
∈
𝒫
ℝ
→
vol
*
⁡
B
∈
ℝ
→
vol
*
⁡
B
=
vol
*
⁡
B
∩
A
+
vol
*
⁡
B
∖
A
14
3
13
simplbiim
⊢
A
∈
dom
⁡
vol
→
B
∈
𝒫
ℝ
→
vol
*
⁡
B
∈
ℝ
→
vol
*
⁡
B
=
vol
*
⁡
B
∩
A
+
vol
*
⁡
B
∖
A
15
2
14
syl5bir
⊢
A
∈
dom
⁡
vol
→
B
⊆
ℝ
→
vol
*
⁡
B
∈
ℝ
→
vol
*
⁡
B
=
vol
*
⁡
B
∩
A
+
vol
*
⁡
B
∖
A
16
15
3imp
⊢
A
∈
dom
⁡
vol
∧
B
⊆
ℝ
∧
vol
*
⁡
B
∈
ℝ
→
vol
*
⁡
B
=
vol
*
⁡
B
∩
A
+
vol
*
⁡
B
∖
A