Metamath Proof Explorer


Theorem mblsplit

Description: The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014)

Ref Expression
Assertion mblsplit A dom vol B vol * B vol * B = vol * B A + vol * B A

Proof

Step Hyp Ref Expression
1 reex V
2 1 elpw2 B 𝒫 B
3 ismbl A dom vol A x 𝒫 vol * x vol * x = vol * x A + vol * x A
4 fveq2 x = B vol * x = vol * B
5 4 eleq1d x = B vol * x vol * B
6 ineq1 x = B x A = B A
7 6 fveq2d x = B vol * x A = vol * B A
8 difeq1 x = B x A = B A
9 8 fveq2d x = B vol * x A = vol * B A
10 7 9 oveq12d x = B vol * x A + vol * x A = vol * B A + vol * B A
11 4 10 eqeq12d x = B vol * x = vol * x A + vol * x A vol * B = vol * B A + vol * B A
12 5 11 imbi12d x = B vol * x vol * x = vol * x A + vol * x A vol * B vol * B = vol * B A + vol * B A
13 12 rspccv x 𝒫 vol * x vol * x = vol * x A + vol * x A B 𝒫 vol * B vol * B = vol * B A + vol * B A
14 3 13 simplbiim A dom vol B 𝒫 vol * B vol * B = vol * B A + vol * B A
15 2 14 syl5bir A dom vol B vol * B vol * B = vol * B A + vol * B A
16 15 3imp A dom vol B vol * B vol * B = vol * B A + vol * B A