Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
mblss
Next ⟩
mblsplit
Metamath Proof Explorer
Ascii
Unicode
Theorem
mblss
Description:
A measurable set is a subset of the reals.
(Contributed by
Mario Carneiro
, 17-Mar-2014)
Ref
Expression
Assertion
mblss
⊢
A
∈
dom
⁡
vol
→
A
⊆
ℝ
Proof
Step
Hyp
Ref
Expression
1
ismbl
⊢
A
∈
dom
⁡
vol
↔
A
⊆
ℝ
∧
∀
x
∈
𝒫
ℝ
vol
*
⁡
x
∈
ℝ
→
vol
*
⁡
x
=
vol
*
⁡
x
∩
A
+
vol
*
⁡
x
∖
A
2
1
simplbi
⊢
A
∈
dom
⁡
vol
→
A
⊆
ℝ