Step |
Hyp |
Ref |
Expression |
1 |
|
mccl.kb |
|
2 |
|
mccl.a |
|
3 |
|
mccl.b |
|
4 |
|
sumeq1 |
|
5 |
4
|
fveq2d |
|
6 |
|
prodeq1 |
|
7 |
5 6
|
oveq12d |
|
8 |
7
|
eleq1d |
|
9 |
8
|
ralbidv |
|
10 |
|
oveq2 |
|
11 |
10
|
raleqdv |
|
12 |
9 11
|
bitrd |
|
13 |
|
sumeq1 |
|
14 |
13
|
fveq2d |
|
15 |
|
prodeq1 |
|
16 |
14 15
|
oveq12d |
|
17 |
16
|
eleq1d |
|
18 |
17
|
ralbidv |
|
19 |
|
oveq2 |
|
20 |
19
|
raleqdv |
|
21 |
18 20
|
bitrd |
|
22 |
|
sumeq1 |
|
23 |
22
|
fveq2d |
|
24 |
|
prodeq1 |
|
25 |
23 24
|
oveq12d |
|
26 |
25
|
eleq1d |
|
27 |
26
|
ralbidv |
|
28 |
|
oveq2 |
|
29 |
28
|
raleqdv |
|
30 |
27 29
|
bitrd |
|
31 |
|
sumeq1 |
|
32 |
31
|
fveq2d |
|
33 |
|
prodeq1 |
|
34 |
32 33
|
oveq12d |
|
35 |
34
|
eleq1d |
|
36 |
35
|
ralbidv |
|
37 |
|
oveq2 |
|
38 |
37
|
raleqdv |
|
39 |
36 38
|
bitrd |
|
40 |
|
sum0 |
|
41 |
40
|
fveq2i |
|
42 |
|
fac0 |
|
43 |
41 42
|
eqtri |
|
44 |
|
prod0 |
|
45 |
43 44
|
oveq12i |
|
46 |
|
1div1e1 |
|
47 |
45 46
|
eqtri |
|
48 |
|
1nn |
|
49 |
47 48
|
eqeltri |
|
50 |
49
|
a1i |
|
51 |
50
|
ralrimiva |
|
52 |
|
nfv |
|
53 |
|
nfra1 |
|
54 |
52 53
|
nfan |
|
55 |
|
simpll |
|
56 |
|
fveq2 |
|
57 |
56
|
cbvsumv |
|
58 |
57
|
a1i |
|
59 |
|
fveq1 |
|
60 |
59
|
sumeq2sdv |
|
61 |
58 60
|
eqtrd |
|
62 |
61
|
fveq2d |
|
63 |
|
2fveq3 |
|
64 |
63
|
cbvprodv |
|
65 |
64
|
a1i |
|
66 |
59
|
fveq2d |
|
67 |
66
|
prodeq2ad |
|
68 |
65 67
|
eqtrd |
|
69 |
62 68
|
oveq12d |
|
70 |
69
|
eleq1d |
|
71 |
70
|
cbvralvw |
|
72 |
71
|
biimpi |
|
73 |
72
|
ad2antlr |
|
74 |
|
simpr |
|
75 |
2
|
ad3antrrr |
|
76 |
|
simprl |
|
77 |
76
|
ad2antrr |
|
78 |
|
simprr |
|
79 |
78
|
ad2antrr |
|
80 |
|
simpr |
|
81 |
|
fveq2 |
|
82 |
81
|
cbvsumv |
|
83 |
82
|
fveq2i |
|
84 |
|
2fveq3 |
|
85 |
84
|
cbvprodv |
|
86 |
83 85
|
oveq12i |
|
87 |
86
|
eleq1i |
|
88 |
87
|
ralbii |
|
89 |
88
|
biimpi |
|
90 |
89
|
ad2antlr |
|
91 |
75 77 79 80 90
|
mccllem |
|
92 |
55 73 74 91
|
syl21anc |
|
93 |
92
|
ex |
|
94 |
54 93
|
ralrimi |
|
95 |
94
|
ex |
|
96 |
12 21 30 39 51 95 2
|
findcard2d |
|
97 |
|
nfcv |
|
98 |
97 1
|
nfeq |
|
99 |
|
fveq1 |
|
100 |
99
|
a1d |
|
101 |
98 100
|
ralrimi |
|
102 |
101
|
sumeq2d |
|
103 |
102
|
fveq2d |
|
104 |
99
|
fveq2d |
|
105 |
104
|
a1d |
|
106 |
98 105
|
ralrimi |
|
107 |
106
|
prodeq2d |
|
108 |
103 107
|
oveq12d |
|
109 |
108
|
eleq1d |
|
110 |
109
|
rspccva |
|
111 |
96 3 110
|
syl2anc |
|