Metamath Proof Explorer


Theorem mdandyv0

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv0.1 φ
mdandyv0.2 ψ
mdandyv0.3 χ
mdandyv0.4 θ
mdandyv0.5 τ
mdandyv0.6 η
Assertion mdandyv0 χ φ θ φ τ φ η φ

Proof

Step Hyp Ref Expression
1 mdandyv0.1 φ
2 mdandyv0.2 ψ
3 mdandyv0.3 χ
4 mdandyv0.4 θ
5 mdandyv0.5 τ
6 mdandyv0.6 η
7 3 1 bothfbothsame χ φ
8 4 1 bothfbothsame θ φ
9 7 8 pm3.2i χ φ θ φ
10 5 1 bothfbothsame τ φ
11 9 10 pm3.2i χ φ θ φ τ φ
12 6 1 bothfbothsame η φ
13 11 12 pm3.2i χ φ θ φ τ φ η φ