Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv0
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv0.1
⊢ φ ↔ ⊥
mdandyv0.2
⊢ ψ ↔ ⊤
mdandyv0.3
⊢ χ ↔ ⊥
mdandyv0.4
⊢ θ ↔ ⊥
mdandyv0.5
⊢ τ ↔ ⊥
mdandyv0.6
⊢ η ↔ ⊥
Assertion
mdandyv0
⊢ χ ↔ φ ∧ θ ↔ φ ∧ τ ↔ φ ∧ η ↔ φ
Proof
Step
Hyp
Ref
Expression
1
mdandyv0.1
⊢ φ ↔ ⊥
2
mdandyv0.2
⊢ ψ ↔ ⊤
3
mdandyv0.3
⊢ χ ↔ ⊥
4
mdandyv0.4
⊢ θ ↔ ⊥
5
mdandyv0.5
⊢ τ ↔ ⊥
6
mdandyv0.6
⊢ η ↔ ⊥
7
3 1
bothfbothsame
⊢ χ ↔ φ
8
4 1
bothfbothsame
⊢ θ ↔ φ
9
7 8
pm3.2i
⊢ χ ↔ φ ∧ θ ↔ φ
10
5 1
bothfbothsame
⊢ τ ↔ φ
11
9 10
pm3.2i
⊢ χ ↔ φ ∧ θ ↔ φ ∧ τ ↔ φ
12
6 1
bothfbothsame
⊢ η ↔ φ
13
11 12
pm3.2i
⊢ χ ↔ φ ∧ θ ↔ φ ∧ τ ↔ φ ∧ η ↔ φ