Metamath Proof Explorer


Theorem mdandyv10

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv10.1 φ
mdandyv10.2 ψ
mdandyv10.3 χ
mdandyv10.4 θ
mdandyv10.5 τ
mdandyv10.6 η
Assertion mdandyv10 χ φ θ ψ τ φ η ψ

Proof

Step Hyp Ref Expression
1 mdandyv10.1 φ
2 mdandyv10.2 ψ
3 mdandyv10.3 χ
4 mdandyv10.4 θ
5 mdandyv10.5 τ
6 mdandyv10.6 η
7 3 1 bothfbothsame χ φ
8 4 2 bothtbothsame θ ψ
9 7 8 pm3.2i χ φ θ ψ
10 5 1 bothfbothsame τ φ
11 9 10 pm3.2i χ φ θ ψ τ φ
12 6 2 bothtbothsame η ψ
13 11 12 pm3.2i χ φ θ ψ τ φ η ψ