Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv10
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv10.1
⊢ φ ↔ ⊥
mdandyv10.2
⊢ ψ ↔ ⊤
mdandyv10.3
⊢ χ ↔ ⊥
mdandyv10.4
⊢ θ ↔ ⊤
mdandyv10.5
⊢ τ ↔ ⊥
mdandyv10.6
⊢ η ↔ ⊤
Assertion
mdandyv10
⊢ χ ↔ φ ∧ θ ↔ ψ ∧ τ ↔ φ ∧ η ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
mdandyv10.1
⊢ φ ↔ ⊥
2
mdandyv10.2
⊢ ψ ↔ ⊤
3
mdandyv10.3
⊢ χ ↔ ⊥
4
mdandyv10.4
⊢ θ ↔ ⊤
5
mdandyv10.5
⊢ τ ↔ ⊥
6
mdandyv10.6
⊢ η ↔ ⊤
7
3 1
bothfbothsame
⊢ χ ↔ φ
8
4 2
bothtbothsame
⊢ θ ↔ ψ
9
7 8
pm3.2i
⊢ χ ↔ φ ∧ θ ↔ ψ
10
5 1
bothfbothsame
⊢ τ ↔ φ
11
9 10
pm3.2i
⊢ χ ↔ φ ∧ θ ↔ ψ ∧ τ ↔ φ
12
6 2
bothtbothsame
⊢ η ↔ ψ
13
11 12
pm3.2i
⊢ χ ↔ φ ∧ θ ↔ ψ ∧ τ ↔ φ ∧ η ↔ ψ