Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv11
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv11.1
⊢ φ ↔ ⊥
mdandyv11.2
⊢ ψ ↔ ⊤
mdandyv11.3
⊢ χ ↔ ⊤
mdandyv11.4
⊢ θ ↔ ⊤
mdandyv11.5
⊢ τ ↔ ⊥
mdandyv11.6
⊢ η ↔ ⊤
Assertion
mdandyv11
⊢ χ ↔ ψ ∧ θ ↔ ψ ∧ τ ↔ φ ∧ η ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
mdandyv11.1
⊢ φ ↔ ⊥
2
mdandyv11.2
⊢ ψ ↔ ⊤
3
mdandyv11.3
⊢ χ ↔ ⊤
4
mdandyv11.4
⊢ θ ↔ ⊤
5
mdandyv11.5
⊢ τ ↔ ⊥
6
mdandyv11.6
⊢ η ↔ ⊤
7
3 2
bothtbothsame
⊢ χ ↔ ψ
8
4 2
bothtbothsame
⊢ θ ↔ ψ
9
7 8
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ ψ
10
5 1
bothfbothsame
⊢ τ ↔ φ
11
9 10
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ ψ ∧ τ ↔ φ
12
6 2
bothtbothsame
⊢ η ↔ ψ
13
11 12
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ ψ ∧ τ ↔ φ ∧ η ↔ ψ