Metamath Proof Explorer


Theorem mdandyv13

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv13.1 φ
mdandyv13.2 ψ
mdandyv13.3 χ
mdandyv13.4 θ
mdandyv13.5 τ
mdandyv13.6 η
Assertion mdandyv13 χ ψ θ φ τ ψ η ψ

Proof

Step Hyp Ref Expression
1 mdandyv13.1 φ
2 mdandyv13.2 ψ
3 mdandyv13.3 χ
4 mdandyv13.4 θ
5 mdandyv13.5 τ
6 mdandyv13.6 η
7 3 2 bothtbothsame χ ψ
8 4 1 bothfbothsame θ φ
9 7 8 pm3.2i χ ψ θ φ
10 5 2 bothtbothsame τ ψ
11 9 10 pm3.2i χ ψ θ φ τ ψ
12 6 2 bothtbothsame η ψ
13 11 12 pm3.2i χ ψ θ φ τ ψ η ψ