Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv13
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv13.1
⊢ φ ↔ ⊥
mdandyv13.2
⊢ ψ ↔ ⊤
mdandyv13.3
⊢ χ ↔ ⊤
mdandyv13.4
⊢ θ ↔ ⊥
mdandyv13.5
⊢ τ ↔ ⊤
mdandyv13.6
⊢ η ↔ ⊤
Assertion
mdandyv13
⊢ χ ↔ ψ ∧ θ ↔ φ ∧ τ ↔ ψ ∧ η ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
mdandyv13.1
⊢ φ ↔ ⊥
2
mdandyv13.2
⊢ ψ ↔ ⊤
3
mdandyv13.3
⊢ χ ↔ ⊤
4
mdandyv13.4
⊢ θ ↔ ⊥
5
mdandyv13.5
⊢ τ ↔ ⊤
6
mdandyv13.6
⊢ η ↔ ⊤
7
3 2
bothtbothsame
⊢ χ ↔ ψ
8
4 1
bothfbothsame
⊢ θ ↔ φ
9
7 8
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ φ
10
5 2
bothtbothsame
⊢ τ ↔ ψ
11
9 10
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ φ ∧ τ ↔ ψ
12
6 2
bothtbothsame
⊢ η ↔ ψ
13
11 12
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ φ ∧ τ ↔ ψ ∧ η ↔ ψ