Metamath Proof Explorer


Theorem mdandyv14

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv14.1 φ
mdandyv14.2 ψ
mdandyv14.3 χ
mdandyv14.4 θ
mdandyv14.5 τ
mdandyv14.6 η
Assertion mdandyv14 χ φ θ ψ τ ψ η ψ

Proof

Step Hyp Ref Expression
1 mdandyv14.1 φ
2 mdandyv14.2 ψ
3 mdandyv14.3 χ
4 mdandyv14.4 θ
5 mdandyv14.5 τ
6 mdandyv14.6 η
7 3 1 bothfbothsame χ φ
8 4 2 bothtbothsame θ ψ
9 7 8 pm3.2i χ φ θ ψ
10 5 2 bothtbothsame τ ψ
11 9 10 pm3.2i χ φ θ ψ τ ψ
12 6 2 bothtbothsame η ψ
13 11 12 pm3.2i χ φ θ ψ τ ψ η ψ