Metamath Proof Explorer


Theorem mdandyv15

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv15.1 φ
mdandyv15.2 ψ
mdandyv15.3 χ
mdandyv15.4 θ
mdandyv15.5 τ
mdandyv15.6 η
Assertion mdandyv15 χ ψ θ ψ τ ψ η ψ

Proof

Step Hyp Ref Expression
1 mdandyv15.1 φ
2 mdandyv15.2 ψ
3 mdandyv15.3 χ
4 mdandyv15.4 θ
5 mdandyv15.5 τ
6 mdandyv15.6 η
7 3 2 bothtbothsame χ ψ
8 4 2 bothtbothsame θ ψ
9 7 8 pm3.2i χ ψ θ ψ
10 5 2 bothtbothsame τ ψ
11 9 10 pm3.2i χ ψ θ ψ τ ψ
12 6 2 bothtbothsame η ψ
13 11 12 pm3.2i χ ψ θ ψ τ ψ η ψ