Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdandyv2.1 | |
|
mdandyv2.2 | |
||
mdandyv2.3 | |
||
mdandyv2.4 | |
||
mdandyv2.5 | |
||
mdandyv2.6 | |
||
Assertion | mdandyv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdandyv2.1 | |
|
2 | mdandyv2.2 | |
|
3 | mdandyv2.3 | |
|
4 | mdandyv2.4 | |
|
5 | mdandyv2.5 | |
|
6 | mdandyv2.6 | |
|
7 | 3 1 | bothfbothsame | |
8 | 4 2 | bothtbothsame | |
9 | 7 8 | pm3.2i | |
10 | 5 1 | bothfbothsame | |
11 | 9 10 | pm3.2i | |
12 | 6 1 | bothfbothsame | |
13 | 11 12 | pm3.2i | |