Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv3
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv3.1
⊢ φ ↔ ⊥
mdandyv3.2
⊢ ψ ↔ ⊤
mdandyv3.3
⊢ χ ↔ ⊤
mdandyv3.4
⊢ θ ↔ ⊤
mdandyv3.5
⊢ τ ↔ ⊥
mdandyv3.6
⊢ η ↔ ⊥
Assertion
mdandyv3
⊢ χ ↔ ψ ∧ θ ↔ ψ ∧ τ ↔ φ ∧ η ↔ φ
Proof
Step
Hyp
Ref
Expression
1
mdandyv3.1
⊢ φ ↔ ⊥
2
mdandyv3.2
⊢ ψ ↔ ⊤
3
mdandyv3.3
⊢ χ ↔ ⊤
4
mdandyv3.4
⊢ θ ↔ ⊤
5
mdandyv3.5
⊢ τ ↔ ⊥
6
mdandyv3.6
⊢ η ↔ ⊥
7
3 2
bothtbothsame
⊢ χ ↔ ψ
8
4 2
bothtbothsame
⊢ θ ↔ ψ
9
7 8
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ ψ
10
5 1
bothfbothsame
⊢ τ ↔ φ
11
9 10
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ ψ ∧ τ ↔ φ
12
6 1
bothfbothsame
⊢ η ↔ φ
13
11 12
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ ψ ∧ τ ↔ φ ∧ η ↔ φ