Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv5
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv5.1
⊢ φ ↔ ⊥
mdandyv5.2
⊢ ψ ↔ ⊤
mdandyv5.3
⊢ χ ↔ ⊤
mdandyv5.4
⊢ θ ↔ ⊥
mdandyv5.5
⊢ τ ↔ ⊤
mdandyv5.6
⊢ η ↔ ⊥
Assertion
mdandyv5
⊢ χ ↔ ψ ∧ θ ↔ φ ∧ τ ↔ ψ ∧ η ↔ φ
Proof
Step
Hyp
Ref
Expression
1
mdandyv5.1
⊢ φ ↔ ⊥
2
mdandyv5.2
⊢ ψ ↔ ⊤
3
mdandyv5.3
⊢ χ ↔ ⊤
4
mdandyv5.4
⊢ θ ↔ ⊥
5
mdandyv5.5
⊢ τ ↔ ⊤
6
mdandyv5.6
⊢ η ↔ ⊥
7
3 2
bothtbothsame
⊢ χ ↔ ψ
8
4 1
bothfbothsame
⊢ θ ↔ φ
9
7 8
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ φ
10
5 2
bothtbothsame
⊢ τ ↔ ψ
11
9 10
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ φ ∧ τ ↔ ψ
12
6 1
bothfbothsame
⊢ η ↔ φ
13
11 12
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ φ ∧ τ ↔ ψ ∧ η ↔ φ