Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv6
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv6.1
⊢ φ ↔ ⊥
mdandyv6.2
⊢ ψ ↔ ⊤
mdandyv6.3
⊢ χ ↔ ⊥
mdandyv6.4
⊢ θ ↔ ⊤
mdandyv6.5
⊢ τ ↔ ⊤
mdandyv6.6
⊢ η ↔ ⊥
Assertion
mdandyv6
⊢ χ ↔ φ ∧ θ ↔ ψ ∧ τ ↔ ψ ∧ η ↔ φ
Proof
Step
Hyp
Ref
Expression
1
mdandyv6.1
⊢ φ ↔ ⊥
2
mdandyv6.2
⊢ ψ ↔ ⊤
3
mdandyv6.3
⊢ χ ↔ ⊥
4
mdandyv6.4
⊢ θ ↔ ⊤
5
mdandyv6.5
⊢ τ ↔ ⊤
6
mdandyv6.6
⊢ η ↔ ⊥
7
3 1
bothfbothsame
⊢ χ ↔ φ
8
4 2
bothtbothsame
⊢ θ ↔ ψ
9
7 8
pm3.2i
⊢ χ ↔ φ ∧ θ ↔ ψ
10
5 2
bothtbothsame
⊢ τ ↔ ψ
11
9 10
pm3.2i
⊢ χ ↔ φ ∧ θ ↔ ψ ∧ τ ↔ ψ
12
6 1
bothfbothsame
⊢ η ↔ φ
13
11 12
pm3.2i
⊢ χ ↔ φ ∧ θ ↔ ψ ∧ τ ↔ ψ ∧ η ↔ φ