Metamath Proof Explorer


Theorem mdandyv7

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv7.1 φ
mdandyv7.2 ψ
mdandyv7.3 χ
mdandyv7.4 θ
mdandyv7.5 τ
mdandyv7.6 η
Assertion mdandyv7 χ ψ θ ψ τ ψ η φ

Proof

Step Hyp Ref Expression
1 mdandyv7.1 φ
2 mdandyv7.2 ψ
3 mdandyv7.3 χ
4 mdandyv7.4 θ
5 mdandyv7.5 τ
6 mdandyv7.6 η
7 3 2 bothtbothsame χ ψ
8 4 2 bothtbothsame θ ψ
9 7 8 pm3.2i χ ψ θ ψ
10 5 2 bothtbothsame τ ψ
11 9 10 pm3.2i χ ψ θ ψ τ ψ
12 6 1 bothfbothsame η φ
13 11 12 pm3.2i χ ψ θ ψ τ ψ η φ