Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyv7
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy , 6-Sep-2016)
Ref
Expression
Hypotheses
mdandyv7.1
⊢ φ ↔ ⊥
mdandyv7.2
⊢ ψ ↔ ⊤
mdandyv7.3
⊢ χ ↔ ⊤
mdandyv7.4
⊢ θ ↔ ⊤
mdandyv7.5
⊢ τ ↔ ⊤
mdandyv7.6
⊢ η ↔ ⊥
Assertion
mdandyv7
⊢ χ ↔ ψ ∧ θ ↔ ψ ∧ τ ↔ ψ ∧ η ↔ φ
Proof
Step
Hyp
Ref
Expression
1
mdandyv7.1
⊢ φ ↔ ⊥
2
mdandyv7.2
⊢ ψ ↔ ⊤
3
mdandyv7.3
⊢ χ ↔ ⊤
4
mdandyv7.4
⊢ θ ↔ ⊤
5
mdandyv7.5
⊢ τ ↔ ⊤
6
mdandyv7.6
⊢ η ↔ ⊥
7
3 2
bothtbothsame
⊢ χ ↔ ψ
8
4 2
bothtbothsame
⊢ θ ↔ ψ
9
7 8
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ ψ
10
5 2
bothtbothsame
⊢ τ ↔ ψ
11
9 10
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ ψ ∧ τ ↔ ψ
12
6 1
bothfbothsame
⊢ η ↔ φ
13
11 12
pm3.2i
⊢ χ ↔ ψ ∧ θ ↔ ψ ∧ τ ↔ ψ ∧ η ↔ φ