Metamath Proof Explorer


Theorem mdandyv8

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv8.1 φ
mdandyv8.2 ψ
mdandyv8.3 χ
mdandyv8.4 θ
mdandyv8.5 τ
mdandyv8.6 η
Assertion mdandyv8 χ φ θ φ τ φ η ψ

Proof

Step Hyp Ref Expression
1 mdandyv8.1 φ
2 mdandyv8.2 ψ
3 mdandyv8.3 χ
4 mdandyv8.4 θ
5 mdandyv8.5 τ
6 mdandyv8.6 η
7 3 1 bothfbothsame χ φ
8 4 1 bothfbothsame θ φ
9 7 8 pm3.2i χ φ θ φ
10 5 1 bothfbothsame τ φ
11 9 10 pm3.2i χ φ θ φ τ φ
12 6 2 bothtbothsame η ψ
13 11 12 pm3.2i χ φ θ φ τ φ η ψ