Metamath Proof Explorer


Theorem mdandyv9

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv9.1 φ
mdandyv9.2 ψ
mdandyv9.3 χ
mdandyv9.4 θ
mdandyv9.5 τ
mdandyv9.6 η
Assertion mdandyv9 χ ψ θ φ τ φ η ψ

Proof

Step Hyp Ref Expression
1 mdandyv9.1 φ
2 mdandyv9.2 ψ
3 mdandyv9.3 χ
4 mdandyv9.4 θ
5 mdandyv9.5 τ
6 mdandyv9.6 η
7 3 2 bothtbothsame χ ψ
8 4 1 bothfbothsame θ φ
9 7 8 pm3.2i χ ψ θ φ
10 5 1 bothfbothsame τ φ
11 9 10 pm3.2i χ ψ θ φ τ φ
12 6 2 bothtbothsame η ψ
13 11 12 pm3.2i χ ψ θ φ τ φ η ψ