Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr0
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr0.1
⊢ φ ↔ ζ
mdandyvr0.2
⊢ ψ ↔ σ
mdandyvr0.3
⊢ χ ↔ φ
mdandyvr0.4
⊢ θ ↔ φ
mdandyvr0.5
⊢ τ ↔ φ
mdandyvr0.6
⊢ η ↔ φ
Assertion
mdandyvr0
⊢ χ ↔ ζ ∧ θ ↔ ζ ∧ τ ↔ ζ ∧ η ↔ ζ
Proof
Step
Hyp
Ref
Expression
1
mdandyvr0.1
⊢ φ ↔ ζ
2
mdandyvr0.2
⊢ ψ ↔ σ
3
mdandyvr0.3
⊢ χ ↔ φ
4
mdandyvr0.4
⊢ θ ↔ φ
5
mdandyvr0.5
⊢ τ ↔ φ
6
mdandyvr0.6
⊢ η ↔ φ
7
3 1
bitri
⊢ χ ↔ ζ
8
4 1
bitri
⊢ θ ↔ ζ
9
7 8
pm3.2i
⊢ χ ↔ ζ ∧ θ ↔ ζ
10
5 1
bitri
⊢ τ ↔ ζ
11
9 10
pm3.2i
⊢ χ ↔ ζ ∧ θ ↔ ζ ∧ τ ↔ ζ
12
6 1
bitri
⊢ η ↔ ζ
13
11 12
pm3.2i
⊢ χ ↔ ζ ∧ θ ↔ ζ ∧ τ ↔ ζ ∧ η ↔ ζ