Metamath Proof Explorer


Theorem mdandyvr0

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr0.1 φ ζ
mdandyvr0.2 ψ σ
mdandyvr0.3 χ φ
mdandyvr0.4 θ φ
mdandyvr0.5 τ φ
mdandyvr0.6 η φ
Assertion mdandyvr0 χ ζ θ ζ τ ζ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvr0.1 φ ζ
2 mdandyvr0.2 ψ σ
3 mdandyvr0.3 χ φ
4 mdandyvr0.4 θ φ
5 mdandyvr0.5 τ φ
6 mdandyvr0.6 η φ
7 3 1 bitri χ ζ
8 4 1 bitri θ ζ
9 7 8 pm3.2i χ ζ θ ζ
10 5 1 bitri τ ζ
11 9 10 pm3.2i χ ζ θ ζ τ ζ
12 6 1 bitri η ζ
13 11 12 pm3.2i χ ζ θ ζ τ ζ η ζ