Metamath Proof Explorer


Theorem mdandyvr1

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr1.1 φ ζ
mdandyvr1.2 ψ σ
mdandyvr1.3 χ ψ
mdandyvr1.4 θ φ
mdandyvr1.5 τ φ
mdandyvr1.6 η φ
Assertion mdandyvr1 χ σ θ ζ τ ζ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvr1.1 φ ζ
2 mdandyvr1.2 ψ σ
3 mdandyvr1.3 χ ψ
4 mdandyvr1.4 θ φ
5 mdandyvr1.5 τ φ
6 mdandyvr1.6 η φ
7 3 2 bitri χ σ
8 4 1 bitri θ ζ
9 7 8 pm3.2i χ σ θ ζ
10 5 1 bitri τ ζ
11 9 10 pm3.2i χ σ θ ζ τ ζ
12 6 1 bitri η ζ
13 11 12 pm3.2i χ σ θ ζ τ ζ η ζ