Metamath Proof Explorer


Theorem mdandyvr10

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr10.1 φ ζ
mdandyvr10.2 ψ σ
mdandyvr10.3 χ φ
mdandyvr10.4 θ ψ
mdandyvr10.5 τ φ
mdandyvr10.6 η ψ
Assertion mdandyvr10 χ ζ θ σ τ ζ η σ

Proof

Step Hyp Ref Expression
1 mdandyvr10.1 φ ζ
2 mdandyvr10.2 ψ σ
3 mdandyvr10.3 χ φ
4 mdandyvr10.4 θ ψ
5 mdandyvr10.5 τ φ
6 mdandyvr10.6 η ψ
7 2 1 3 4 5 6 mdandyvr5 χ ζ θ σ τ ζ η σ