Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr10
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr10.1
⊢ φ ↔ ζ
mdandyvr10.2
⊢ ψ ↔ σ
mdandyvr10.3
⊢ χ ↔ φ
mdandyvr10.4
⊢ θ ↔ ψ
mdandyvr10.5
⊢ τ ↔ φ
mdandyvr10.6
⊢ η ↔ ψ
Assertion
mdandyvr10
⊢ χ ↔ ζ ∧ θ ↔ σ ∧ τ ↔ ζ ∧ η ↔ σ
Proof
Step
Hyp
Ref
Expression
1
mdandyvr10.1
⊢ φ ↔ ζ
2
mdandyvr10.2
⊢ ψ ↔ σ
3
mdandyvr10.3
⊢ χ ↔ φ
4
mdandyvr10.4
⊢ θ ↔ ψ
5
mdandyvr10.5
⊢ τ ↔ φ
6
mdandyvr10.6
⊢ η ↔ ψ
7
2 1 3 4 5 6
mdandyvr5
⊢ χ ↔ ζ ∧ θ ↔ σ ∧ τ ↔ ζ ∧ η ↔ σ