Metamath Proof Explorer


Theorem mdandyvr11

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr11.1 φ ζ
mdandyvr11.2 ψ σ
mdandyvr11.3 χ ψ
mdandyvr11.4 θ ψ
mdandyvr11.5 τ φ
mdandyvr11.6 η ψ
Assertion mdandyvr11 χ σ θ σ τ ζ η σ

Proof

Step Hyp Ref Expression
1 mdandyvr11.1 φ ζ
2 mdandyvr11.2 ψ σ
3 mdandyvr11.3 χ ψ
4 mdandyvr11.4 θ ψ
5 mdandyvr11.5 τ φ
6 mdandyvr11.6 η ψ
7 2 1 3 4 5 6 mdandyvr4 χ σ θ σ τ ζ η σ