Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr12
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr12.1
⊢ φ ↔ ζ
mdandyvr12.2
⊢ ψ ↔ σ
mdandyvr12.3
⊢ χ ↔ φ
mdandyvr12.4
⊢ θ ↔ φ
mdandyvr12.5
⊢ τ ↔ ψ
mdandyvr12.6
⊢ η ↔ ψ
Assertion
mdandyvr12
⊢ χ ↔ ζ ∧ θ ↔ ζ ∧ τ ↔ σ ∧ η ↔ σ
Proof
Step
Hyp
Ref
Expression
1
mdandyvr12.1
⊢ φ ↔ ζ
2
mdandyvr12.2
⊢ ψ ↔ σ
3
mdandyvr12.3
⊢ χ ↔ φ
4
mdandyvr12.4
⊢ θ ↔ φ
5
mdandyvr12.5
⊢ τ ↔ ψ
6
mdandyvr12.6
⊢ η ↔ ψ
7
2 1 3 4 5 6
mdandyvr3
⊢ χ ↔ ζ ∧ θ ↔ ζ ∧ τ ↔ σ ∧ η ↔ σ