Metamath Proof Explorer


Theorem mdandyvr12

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr12.1 φ ζ
mdandyvr12.2 ψ σ
mdandyvr12.3 χ φ
mdandyvr12.4 θ φ
mdandyvr12.5 τ ψ
mdandyvr12.6 η ψ
Assertion mdandyvr12 χ ζ θ ζ τ σ η σ

Proof

Step Hyp Ref Expression
1 mdandyvr12.1 φ ζ
2 mdandyvr12.2 ψ σ
3 mdandyvr12.3 χ φ
4 mdandyvr12.4 θ φ
5 mdandyvr12.5 τ ψ
6 mdandyvr12.6 η ψ
7 2 1 3 4 5 6 mdandyvr3 χ ζ θ ζ τ σ η σ