Metamath Proof Explorer


Theorem mdandyvr13

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr13.1 φ ζ
mdandyvr13.2 ψ σ
mdandyvr13.3 χ ψ
mdandyvr13.4 θ φ
mdandyvr13.5 τ ψ
mdandyvr13.6 η ψ
Assertion mdandyvr13 χ σ θ ζ τ σ η σ

Proof

Step Hyp Ref Expression
1 mdandyvr13.1 φ ζ
2 mdandyvr13.2 ψ σ
3 mdandyvr13.3 χ ψ
4 mdandyvr13.4 θ φ
5 mdandyvr13.5 τ ψ
6 mdandyvr13.6 η ψ
7 2 1 3 4 5 6 mdandyvr2 χ σ θ ζ τ σ η σ