Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr14
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr14.1
⊢ φ ↔ ζ
mdandyvr14.2
⊢ ψ ↔ σ
mdandyvr14.3
⊢ χ ↔ φ
mdandyvr14.4
⊢ θ ↔ ψ
mdandyvr14.5
⊢ τ ↔ ψ
mdandyvr14.6
⊢ η ↔ ψ
Assertion
mdandyvr14
⊢ χ ↔ ζ ∧ θ ↔ σ ∧ τ ↔ σ ∧ η ↔ σ
Proof
Step
Hyp
Ref
Expression
1
mdandyvr14.1
⊢ φ ↔ ζ
2
mdandyvr14.2
⊢ ψ ↔ σ
3
mdandyvr14.3
⊢ χ ↔ φ
4
mdandyvr14.4
⊢ θ ↔ ψ
5
mdandyvr14.5
⊢ τ ↔ ψ
6
mdandyvr14.6
⊢ η ↔ ψ
7
2 1 3 4 5 6
mdandyvr1
⊢ χ ↔ ζ ∧ θ ↔ σ ∧ τ ↔ σ ∧ η ↔ σ