Metamath Proof Explorer


Theorem mdandyvr14

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr14.1 φ ζ
mdandyvr14.2 ψ σ
mdandyvr14.3 χ φ
mdandyvr14.4 θ ψ
mdandyvr14.5 τ ψ
mdandyvr14.6 η ψ
Assertion mdandyvr14 χ ζ θ σ τ σ η σ

Proof

Step Hyp Ref Expression
1 mdandyvr14.1 φ ζ
2 mdandyvr14.2 ψ σ
3 mdandyvr14.3 χ φ
4 mdandyvr14.4 θ ψ
5 mdandyvr14.5 τ ψ
6 mdandyvr14.6 η ψ
7 2 1 3 4 5 6 mdandyvr1 χ ζ θ σ τ σ η σ