Metamath Proof Explorer


Theorem mdandyvr15

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr15.1 φ ζ
mdandyvr15.2 ψ σ
mdandyvr15.3 χ ψ
mdandyvr15.4 θ ψ
mdandyvr15.5 τ ψ
mdandyvr15.6 η ψ
Assertion mdandyvr15 χ σ θ σ τ σ η σ

Proof

Step Hyp Ref Expression
1 mdandyvr15.1 φ ζ
2 mdandyvr15.2 ψ σ
3 mdandyvr15.3 χ ψ
4 mdandyvr15.4 θ ψ
5 mdandyvr15.5 τ ψ
6 mdandyvr15.6 η ψ
7 2 1 3 4 5 6 mdandyvr0 χ σ θ σ τ σ η σ