Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr15
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr15.1
⊢ φ ↔ ζ
mdandyvr15.2
⊢ ψ ↔ σ
mdandyvr15.3
⊢ χ ↔ ψ
mdandyvr15.4
⊢ θ ↔ ψ
mdandyvr15.5
⊢ τ ↔ ψ
mdandyvr15.6
⊢ η ↔ ψ
Assertion
mdandyvr15
⊢ χ ↔ σ ∧ θ ↔ σ ∧ τ ↔ σ ∧ η ↔ σ
Proof
Step
Hyp
Ref
Expression
1
mdandyvr15.1
⊢ φ ↔ ζ
2
mdandyvr15.2
⊢ ψ ↔ σ
3
mdandyvr15.3
⊢ χ ↔ ψ
4
mdandyvr15.4
⊢ θ ↔ ψ
5
mdandyvr15.5
⊢ τ ↔ ψ
6
mdandyvr15.6
⊢ η ↔ ψ
7
2 1 3 4 5 6
mdandyvr0
⊢ χ ↔ σ ∧ θ ↔ σ ∧ τ ↔ σ ∧ η ↔ σ