Metamath Proof Explorer


Theorem mdandyvr2

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr2.1 φ ζ
mdandyvr2.2 ψ σ
mdandyvr2.3 χ φ
mdandyvr2.4 θ ψ
mdandyvr2.5 τ φ
mdandyvr2.6 η φ
Assertion mdandyvr2 χ ζ θ σ τ ζ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvr2.1 φ ζ
2 mdandyvr2.2 ψ σ
3 mdandyvr2.3 χ φ
4 mdandyvr2.4 θ ψ
5 mdandyvr2.5 τ φ
6 mdandyvr2.6 η φ
7 3 1 bitri χ ζ
8 4 2 bitri θ σ
9 7 8 pm3.2i χ ζ θ σ
10 5 1 bitri τ ζ
11 9 10 pm3.2i χ ζ θ σ τ ζ
12 6 1 bitri η ζ
13 11 12 pm3.2i χ ζ θ σ τ ζ η ζ