Metamath Proof Explorer


Theorem mdandyvr3

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr3.1 φ ζ
mdandyvr3.2 ψ σ
mdandyvr3.3 χ ψ
mdandyvr3.4 θ ψ
mdandyvr3.5 τ φ
mdandyvr3.6 η φ
Assertion mdandyvr3 χ σ θ σ τ ζ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvr3.1 φ ζ
2 mdandyvr3.2 ψ σ
3 mdandyvr3.3 χ ψ
4 mdandyvr3.4 θ ψ
5 mdandyvr3.5 τ φ
6 mdandyvr3.6 η φ
7 3 2 bitri χ σ
8 4 2 bitri θ σ
9 7 8 pm3.2i χ σ θ σ
10 5 1 bitri τ ζ
11 9 10 pm3.2i χ σ θ σ τ ζ
12 6 1 bitri η ζ
13 11 12 pm3.2i χ σ θ σ τ ζ η ζ