Metamath Proof Explorer


Theorem mdandyvr4

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr4.1 φ ζ
mdandyvr4.2 ψ σ
mdandyvr4.3 χ φ
mdandyvr4.4 θ φ
mdandyvr4.5 τ ψ
mdandyvr4.6 η φ
Assertion mdandyvr4 χ ζ θ ζ τ σ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvr4.1 φ ζ
2 mdandyvr4.2 ψ σ
3 mdandyvr4.3 χ φ
4 mdandyvr4.4 θ φ
5 mdandyvr4.5 τ ψ
6 mdandyvr4.6 η φ
7 3 1 bitri χ ζ
8 4 1 bitri θ ζ
9 7 8 pm3.2i χ ζ θ ζ
10 5 2 bitri τ σ
11 9 10 pm3.2i χ ζ θ ζ τ σ
12 6 1 bitri η ζ
13 11 12 pm3.2i χ ζ θ ζ τ σ η ζ