Metamath Proof Explorer


Theorem mdandyvr5

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr5.1 φ ζ
mdandyvr5.2 ψ σ
mdandyvr5.3 χ ψ
mdandyvr5.4 θ φ
mdandyvr5.5 τ ψ
mdandyvr5.6 η φ
Assertion mdandyvr5 χ σ θ ζ τ σ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvr5.1 φ ζ
2 mdandyvr5.2 ψ σ
3 mdandyvr5.3 χ ψ
4 mdandyvr5.4 θ φ
5 mdandyvr5.5 τ ψ
6 mdandyvr5.6 η φ
7 3 2 bitri χ σ
8 4 1 bitri θ ζ
9 7 8 pm3.2i χ σ θ ζ
10 5 2 bitri τ σ
11 9 10 pm3.2i χ σ θ ζ τ σ
12 6 1 bitri η ζ
13 11 12 pm3.2i χ σ θ ζ τ σ η ζ