Metamath Proof Explorer


Theorem mdandyvr6

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr6.1 φ ζ
mdandyvr6.2 ψ σ
mdandyvr6.3 χ φ
mdandyvr6.4 θ ψ
mdandyvr6.5 τ ψ
mdandyvr6.6 η φ
Assertion mdandyvr6 χ ζ θ σ τ σ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvr6.1 φ ζ
2 mdandyvr6.2 ψ σ
3 mdandyvr6.3 χ φ
4 mdandyvr6.4 θ ψ
5 mdandyvr6.5 τ ψ
6 mdandyvr6.6 η φ
7 3 1 bitri χ ζ
8 4 2 bitri θ σ
9 7 8 pm3.2i χ ζ θ σ
10 5 2 bitri τ σ
11 9 10 pm3.2i χ ζ θ σ τ σ
12 6 1 bitri η ζ
13 11 12 pm3.2i χ ζ θ σ τ σ η ζ