Metamath Proof Explorer


Theorem mdandyvr7

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr7.1 φ ζ
mdandyvr7.2 ψ σ
mdandyvr7.3 χ ψ
mdandyvr7.4 θ ψ
mdandyvr7.5 τ ψ
mdandyvr7.6 η φ
Assertion mdandyvr7 χ σ θ σ τ σ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvr7.1 φ ζ
2 mdandyvr7.2 ψ σ
3 mdandyvr7.3 χ ψ
4 mdandyvr7.4 θ ψ
5 mdandyvr7.5 τ ψ
6 mdandyvr7.6 η φ
7 3 2 bitri χ σ
8 4 2 bitri θ σ
9 7 8 pm3.2i χ σ θ σ
10 5 2 bitri τ σ
11 9 10 pm3.2i χ σ θ σ τ σ
12 6 1 bitri η ζ
13 11 12 pm3.2i χ σ θ σ τ σ η ζ