Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr7
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr7.1
⊢ φ ↔ ζ
mdandyvr7.2
⊢ ψ ↔ σ
mdandyvr7.3
⊢ χ ↔ ψ
mdandyvr7.4
⊢ θ ↔ ψ
mdandyvr7.5
⊢ τ ↔ ψ
mdandyvr7.6
⊢ η ↔ φ
Assertion
mdandyvr7
⊢ χ ↔ σ ∧ θ ↔ σ ∧ τ ↔ σ ∧ η ↔ ζ
Proof
Step
Hyp
Ref
Expression
1
mdandyvr7.1
⊢ φ ↔ ζ
2
mdandyvr7.2
⊢ ψ ↔ σ
3
mdandyvr7.3
⊢ χ ↔ ψ
4
mdandyvr7.4
⊢ θ ↔ ψ
5
mdandyvr7.5
⊢ τ ↔ ψ
6
mdandyvr7.6
⊢ η ↔ φ
7
3 2
bitri
⊢ χ ↔ σ
8
4 2
bitri
⊢ θ ↔ σ
9
7 8
pm3.2i
⊢ χ ↔ σ ∧ θ ↔ σ
10
5 2
bitri
⊢ τ ↔ σ
11
9 10
pm3.2i
⊢ χ ↔ σ ∧ θ ↔ σ ∧ τ ↔ σ
12
6 1
bitri
⊢ η ↔ ζ
13
11 12
pm3.2i
⊢ χ ↔ σ ∧ θ ↔ σ ∧ τ ↔ σ ∧ η ↔ ζ