Metamath Proof Explorer


Theorem mdandyvr8

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr8.1 φ ζ
mdandyvr8.2 ψ σ
mdandyvr8.3 χ φ
mdandyvr8.4 θ φ
mdandyvr8.5 τ φ
mdandyvr8.6 η ψ
Assertion mdandyvr8 χ ζ θ ζ τ ζ η σ

Proof

Step Hyp Ref Expression
1 mdandyvr8.1 φ ζ
2 mdandyvr8.2 ψ σ
3 mdandyvr8.3 χ φ
4 mdandyvr8.4 θ φ
5 mdandyvr8.5 τ φ
6 mdandyvr8.6 η ψ
7 2 1 3 4 5 6 mdandyvr7 χ ζ θ ζ τ ζ η σ