Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvr9
Metamath Proof Explorer
Description: Given the equivalences set in the hypotheses, there exist a proof where
ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvr9.1
⊢ φ ↔ ζ
mdandyvr9.2
⊢ ψ ↔ σ
mdandyvr9.3
⊢ χ ↔ ψ
mdandyvr9.4
⊢ θ ↔ φ
mdandyvr9.5
⊢ τ ↔ φ
mdandyvr9.6
⊢ η ↔ ψ
Assertion
mdandyvr9
⊢ χ ↔ σ ∧ θ ↔ ζ ∧ τ ↔ ζ ∧ η ↔ σ
Proof
Step
Hyp
Ref
Expression
1
mdandyvr9.1
⊢ φ ↔ ζ
2
mdandyvr9.2
⊢ ψ ↔ σ
3
mdandyvr9.3
⊢ χ ↔ ψ
4
mdandyvr9.4
⊢ θ ↔ φ
5
mdandyvr9.5
⊢ τ ↔ φ
6
mdandyvr9.6
⊢ η ↔ ψ
7
2 1 3 4 5 6
mdandyvr6
⊢ χ ↔ σ ∧ θ ↔ ζ ∧ τ ↔ ζ ∧ η ↔ σ