Metamath Proof Explorer


Theorem mdandyvr9

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr9.1 φ ζ
mdandyvr9.2 ψ σ
mdandyvr9.3 χ ψ
mdandyvr9.4 θ φ
mdandyvr9.5 τ φ
mdandyvr9.6 η ψ
Assertion mdandyvr9 χ σ θ ζ τ ζ η σ

Proof

Step Hyp Ref Expression
1 mdandyvr9.1 φ ζ
2 mdandyvr9.2 ψ σ
3 mdandyvr9.3 χ ψ
4 mdandyvr9.4 θ φ
5 mdandyvr9.5 τ φ
6 mdandyvr9.6 η ψ
7 2 1 3 4 5 6 mdandyvr6 χ σ θ ζ τ ζ η σ