Metamath Proof Explorer


Theorem mdandyvrx0

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx0.1 φ ζ
mdandyvrx0.2 ψ σ
mdandyvrx0.3 χ φ
mdandyvrx0.4 θ φ
mdandyvrx0.5 τ φ
mdandyvrx0.6 η φ
Assertion mdandyvrx0 χ ζ θ ζ τ ζ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvrx0.1 φ ζ
2 mdandyvrx0.2 ψ σ
3 mdandyvrx0.3 χ φ
4 mdandyvrx0.4 θ φ
5 mdandyvrx0.5 τ φ
6 mdandyvrx0.6 η φ
7 1 3 axorbciffatcxorb χ ζ
8 1 4 axorbciffatcxorb θ ζ
9 7 8 pm3.2i χ ζ θ ζ
10 1 5 axorbciffatcxorb τ ζ
11 9 10 pm3.2i χ ζ θ ζ τ ζ
12 1 6 axorbciffatcxorb η ζ
13 11 12 pm3.2i χ ζ θ ζ τ ζ η ζ