Metamath Proof Explorer


Theorem mdandyvrx1

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx1.1 φ ζ
mdandyvrx1.2 ψ σ
mdandyvrx1.3 χ ψ
mdandyvrx1.4 θ φ
mdandyvrx1.5 τ φ
mdandyvrx1.6 η φ
Assertion mdandyvrx1 χ σ θ ζ τ ζ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvrx1.1 φ ζ
2 mdandyvrx1.2 ψ σ
3 mdandyvrx1.3 χ ψ
4 mdandyvrx1.4 θ φ
5 mdandyvrx1.5 τ φ
6 mdandyvrx1.6 η φ
7 2 3 axorbciffatcxorb χ σ
8 1 4 axorbciffatcxorb θ ζ
9 7 8 pm3.2i χ σ θ ζ
10 1 5 axorbciffatcxorb τ ζ
11 9 10 pm3.2i χ σ θ ζ τ ζ
12 1 6 axorbciffatcxorb η ζ
13 11 12 pm3.2i χ σ θ ζ τ ζ η ζ