Metamath Proof Explorer


Theorem mdandyvrx10

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx10.1 φ ζ
mdandyvrx10.2 ψ σ
mdandyvrx10.3 χ φ
mdandyvrx10.4 θ ψ
mdandyvrx10.5 τ φ
mdandyvrx10.6 η ψ
Assertion mdandyvrx10 χ ζ θ σ τ ζ η σ

Proof

Step Hyp Ref Expression
1 mdandyvrx10.1 φ ζ
2 mdandyvrx10.2 ψ σ
3 mdandyvrx10.3 χ φ
4 mdandyvrx10.4 θ ψ
5 mdandyvrx10.5 τ φ
6 mdandyvrx10.6 η ψ
7 2 1 3 4 5 6 mdandyvrx5 χ ζ θ σ τ ζ η σ