Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvrx11
Metamath Proof Explorer
Description: Given the exclusivities set in the hypotheses, there exist a proof where
ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin
Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvrx11.1
⊢ φ ⊻ ζ
mdandyvrx11.2
⊢ ψ ⊻ σ
mdandyvrx11.3
⊢ χ ↔ ψ
mdandyvrx11.4
⊢ θ ↔ ψ
mdandyvrx11.5
⊢ τ ↔ φ
mdandyvrx11.6
⊢ η ↔ ψ
Assertion
mdandyvrx11
⊢ χ ⊻ σ ∧ θ ⊻ σ ∧ τ ⊻ ζ ∧ η ⊻ σ
Proof
Step
Hyp
Ref
Expression
1
mdandyvrx11.1
⊢ φ ⊻ ζ
2
mdandyvrx11.2
⊢ ψ ⊻ σ
3
mdandyvrx11.3
⊢ χ ↔ ψ
4
mdandyvrx11.4
⊢ θ ↔ ψ
5
mdandyvrx11.5
⊢ τ ↔ φ
6
mdandyvrx11.6
⊢ η ↔ ψ
7
2 1 3 4 5 6
mdandyvrx4
⊢ χ ⊻ σ ∧ θ ⊻ σ ∧ τ ⊻ ζ ∧ η ⊻ σ