Metamath Proof Explorer


Theorem mdandyvrx11

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx11.1 φ ζ
mdandyvrx11.2 ψ σ
mdandyvrx11.3 χ ψ
mdandyvrx11.4 θ ψ
mdandyvrx11.5 τ φ
mdandyvrx11.6 η ψ
Assertion mdandyvrx11 χ σ θ σ τ ζ η σ

Proof

Step Hyp Ref Expression
1 mdandyvrx11.1 φ ζ
2 mdandyvrx11.2 ψ σ
3 mdandyvrx11.3 χ ψ
4 mdandyvrx11.4 θ ψ
5 mdandyvrx11.5 τ φ
6 mdandyvrx11.6 η ψ
7 2 1 3 4 5 6 mdandyvrx4 χ σ θ σ τ ζ η σ