Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvrx12
Metamath Proof Explorer
Description: Given the exclusivities set in the hypotheses, there exist a proof where
ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin
Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvrx12.1
⊢ φ ⊻ ζ
mdandyvrx12.2
⊢ ψ ⊻ σ
mdandyvrx12.3
⊢ χ ↔ φ
mdandyvrx12.4
⊢ θ ↔ φ
mdandyvrx12.5
⊢ τ ↔ ψ
mdandyvrx12.6
⊢ η ↔ ψ
Assertion
mdandyvrx12
⊢ χ ⊻ ζ ∧ θ ⊻ ζ ∧ τ ⊻ σ ∧ η ⊻ σ
Proof
Step
Hyp
Ref
Expression
1
mdandyvrx12.1
⊢ φ ⊻ ζ
2
mdandyvrx12.2
⊢ ψ ⊻ σ
3
mdandyvrx12.3
⊢ χ ↔ φ
4
mdandyvrx12.4
⊢ θ ↔ φ
5
mdandyvrx12.5
⊢ τ ↔ ψ
6
mdandyvrx12.6
⊢ η ↔ ψ
7
2 1 3 4 5 6
mdandyvrx3
⊢ χ ⊻ ζ ∧ θ ⊻ ζ ∧ τ ⊻ σ ∧ η ⊻ σ