Metamath Proof Explorer


Theorem mdandyvrx12

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx12.1 φ ζ
mdandyvrx12.2 ψ σ
mdandyvrx12.3 χ φ
mdandyvrx12.4 θ φ
mdandyvrx12.5 τ ψ
mdandyvrx12.6 η ψ
Assertion mdandyvrx12 χ ζ θ ζ τ σ η σ

Proof

Step Hyp Ref Expression
1 mdandyvrx12.1 φ ζ
2 mdandyvrx12.2 ψ σ
3 mdandyvrx12.3 χ φ
4 mdandyvrx12.4 θ φ
5 mdandyvrx12.5 τ ψ
6 mdandyvrx12.6 η ψ
7 2 1 3 4 5 6 mdandyvrx3 χ ζ θ ζ τ σ η σ