Metamath Proof Explorer


Theorem mdandyvrx13

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx13.1 φ ζ
mdandyvrx13.2 ψ σ
mdandyvrx13.3 χ ψ
mdandyvrx13.4 θ φ
mdandyvrx13.5 τ ψ
mdandyvrx13.6 η ψ
Assertion mdandyvrx13 χ σ θ ζ τ σ η σ

Proof

Step Hyp Ref Expression
1 mdandyvrx13.1 φ ζ
2 mdandyvrx13.2 ψ σ
3 mdandyvrx13.3 χ ψ
4 mdandyvrx13.4 θ φ
5 mdandyvrx13.5 τ ψ
6 mdandyvrx13.6 η ψ
7 2 1 3 4 5 6 mdandyvrx2 χ σ θ ζ τ σ η σ