Metamath Proof Explorer


Theorem mdandyvrx14

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx14.1 φ ζ
mdandyvrx14.2 ψ σ
mdandyvrx14.3 χ φ
mdandyvrx14.4 θ ψ
mdandyvrx14.5 τ ψ
mdandyvrx14.6 η ψ
Assertion mdandyvrx14 χ ζ θ σ τ σ η σ

Proof

Step Hyp Ref Expression
1 mdandyvrx14.1 φ ζ
2 mdandyvrx14.2 ψ σ
3 mdandyvrx14.3 χ φ
4 mdandyvrx14.4 θ ψ
5 mdandyvrx14.5 τ ψ
6 mdandyvrx14.6 η ψ
7 2 1 3 4 5 6 mdandyvrx1 χ ζ θ σ τ σ η σ