Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
mdandyvrx15
Metamath Proof Explorer
Description: Given the exclusivities set in the hypotheses, there exist a proof where
ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin
Udandy , 7-Sep-2016)
Ref
Expression
Hypotheses
mdandyvrx15.1
⊢ φ ⊻ ζ
mdandyvrx15.2
⊢ ψ ⊻ σ
mdandyvrx15.3
⊢ χ ↔ ψ
mdandyvrx15.4
⊢ θ ↔ ψ
mdandyvrx15.5
⊢ τ ↔ ψ
mdandyvrx15.6
⊢ η ↔ ψ
Assertion
mdandyvrx15
⊢ χ ⊻ σ ∧ θ ⊻ σ ∧ τ ⊻ σ ∧ η ⊻ σ
Proof
Step
Hyp
Ref
Expression
1
mdandyvrx15.1
⊢ φ ⊻ ζ
2
mdandyvrx15.2
⊢ ψ ⊻ σ
3
mdandyvrx15.3
⊢ χ ↔ ψ
4
mdandyvrx15.4
⊢ θ ↔ ψ
5
mdandyvrx15.5
⊢ τ ↔ ψ
6
mdandyvrx15.6
⊢ η ↔ ψ
7
2 1 3 4 5 6
mdandyvrx0
⊢ χ ⊻ σ ∧ θ ⊻ σ ∧ τ ⊻ σ ∧ η ⊻ σ