Metamath Proof Explorer


Theorem mdandyvrx15

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx15.1 φ ζ
mdandyvrx15.2 ψ σ
mdandyvrx15.3 χ ψ
mdandyvrx15.4 θ ψ
mdandyvrx15.5 τ ψ
mdandyvrx15.6 η ψ
Assertion mdandyvrx15 χ σ θ σ τ σ η σ

Proof

Step Hyp Ref Expression
1 mdandyvrx15.1 φ ζ
2 mdandyvrx15.2 ψ σ
3 mdandyvrx15.3 χ ψ
4 mdandyvrx15.4 θ ψ
5 mdandyvrx15.5 τ ψ
6 mdandyvrx15.6 η ψ
7 2 1 3 4 5 6 mdandyvrx0 χ σ θ σ τ σ η σ