Metamath Proof Explorer


Theorem mdandyvrx4

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx4.1 φ ζ
mdandyvrx4.2 ψ σ
mdandyvrx4.3 χ φ
mdandyvrx4.4 θ φ
mdandyvrx4.5 τ ψ
mdandyvrx4.6 η φ
Assertion mdandyvrx4 χ ζ θ ζ τ σ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvrx4.1 φ ζ
2 mdandyvrx4.2 ψ σ
3 mdandyvrx4.3 χ φ
4 mdandyvrx4.4 θ φ
5 mdandyvrx4.5 τ ψ
6 mdandyvrx4.6 η φ
7 1 3 axorbciffatcxorb χ ζ
8 1 4 axorbciffatcxorb θ ζ
9 7 8 pm3.2i χ ζ θ ζ
10 2 5 axorbciffatcxorb τ σ
11 9 10 pm3.2i χ ζ θ ζ τ σ
12 1 6 axorbciffatcxorb η ζ
13 11 12 pm3.2i χ ζ θ ζ τ σ η ζ