Metamath Proof Explorer


Theorem mdandyvrx5

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx5.1 φ ζ
mdandyvrx5.2 ψ σ
mdandyvrx5.3 χ ψ
mdandyvrx5.4 θ φ
mdandyvrx5.5 τ ψ
mdandyvrx5.6 η φ
Assertion mdandyvrx5 χ σ θ ζ τ σ η ζ

Proof

Step Hyp Ref Expression
1 mdandyvrx5.1 φ ζ
2 mdandyvrx5.2 ψ σ
3 mdandyvrx5.3 χ ψ
4 mdandyvrx5.4 θ φ
5 mdandyvrx5.5 τ ψ
6 mdandyvrx5.6 η φ
7 2 3 axorbciffatcxorb χ σ
8 1 4 axorbciffatcxorb θ ζ
9 7 8 pm3.2i χ σ θ ζ
10 2 5 axorbciffatcxorb τ σ
11 9 10 pm3.2i χ σ θ ζ τ σ
12 1 6 axorbciffatcxorb η ζ
13 11 12 pm3.2i χ σ θ ζ τ σ η ζ